Diphenyl diselenide and analogs are substrates of cerebral rat thioredoxin reductase: A pathway for their neuroprotective effects
نویسندگان
چکیده
Thioredoxin reductase (TrxR) isoforms play important roles in cell physiology, protecting cells against oxidative processes. In addition to its endogenous substrates (Trx isoforms), hepatic TrxR can reduce organic selenium compounds such as ebselen and diphenyl diselenide to their selenol intermediates, which can be involved in their hepatoprotective properties. Taking this into account, the aim of the present study was to evaluate the hypothesis that ebselen, diphenyl diselenide and its analogs (4,4'-bistrifluoromethyldiphenyl diselenide, 4,4'-bismethoxydiphenyl diselenide, 4.4'-biscarboxy-diphenyl diselenide, 4,4'-bischlorodiphenyl diselenide, 2,4,6,2',4',6'-hexamethyldiphenyl diselenide) could be substrates of rat brain TrxR. In the presence of partially purified rat brain TrxR, diphenyl diselenide, bismethoxydiphenyl diselenide and bischlorodiphenyl diselenide (at 10, 15 and 20μM) stimulated NADPH oxidation, indicating that they are substrates of brain TrxR. In contrast, ebselen and bistrifluoromethyldiphenyl diselenide, that have been previously demonstrated to be substrate of hepatic TrxR, were not reduced by rat brain TrxR. The results presented here suggest that diphenyl diselenide can exert neuroprotective effects by mimicking glutathione peroxidase activity and also via its reduction by TrxR. However, ebselen was not reduced by brain TrxR, indicating that the neuroprotective properties of this compound is possibly mediate by its glutathione peroxidase-like activity.
منابع مشابه
Reduction of diphenyl diselenide and analogs by mammalian thioredoxin reductase is independent of their gluthathione peroxidase-like activity: a possible novel pathway for their antioxidant activity.
Since the successful use of the organoselenium drug ebselen in clinical trials for the treatment of neuropathological conditions associated with oxidative stress, there have been concerted efforts geared towards understanding the precise mechanism of action of ebselen and other organoselenium compounds, especially the diorganyl diselenides such as diphenyl diselenide, and its analogs. Although ...
متن کاملEffects of Diphenyl Diselenide on Methylmercury Toxicity in Rats
This study investigates the efficacy of diphenyl diselenide [(PhSe)2] in attenuating methylmercury- (MeHg-)induced toxicity in rats. Adult rats were treated with MeHg [5 mg/kg/day, intragastrically (i.g.)] and/ or (PhSe)2 [1 mg/kg/day, intraperitoneally (i.p.)] for 21 days. Body weight gain and motor deficits were evaluated prior to treatment, on treatment days 11 and 21. In addition, hepatic a...
متن کاملProtective effects of organoselenium compounds against methylmercury-induced oxidative stress in mouse brain mitochondrial-enriched fractions.
We evaluated the potential neuroprotective effect of 1-100 µM of four organoselenium compounds: diphenyl diselenide, 3'3-ditri-fluoromethyldiphenyl diselenide, p-methoxy-diphenyl diselenide, and p-chloro-diphenyl diselenide, against methylmercury-induced mitochondrial dysfunction and oxidative stress in mitochondrial-enriched fractions from adult Swiss mouse brain. Methylmercury (10-100 µM) sig...
متن کاملBiological effect of di (p-methylbenzoyl) diselenide (in vitro) and its acute hepatotoxicity on rats (in vivo)
Selenium plays an important role in biological system due to its incorporation in glutathione peroxidases and thioredoxin reductase as prosthetic group, the pharmacological studies of synthetic organoseleno-compounds revealed these molecules to be used as antioxidants, enzyme inhibitors, neuroprotectors, antitumor, anti-infectious agents, cytokine inducers and immuno-modulators. The present stu...
متن کاملBiological effect of di (p-methylbenzoyl) diselenide (in vitro) and its acute hepatotoxicity on rats (in vivo)
Selenium plays an important role in biological system due to its incorporation in glutathione peroxidases and thioredoxin reductase as prosthetic group, the pharmacological studies of synthetic organoseleno-compounds revealed these molecules to be used as antioxidants, enzyme inhibitors, neuroprotectors, antitumor, anti-infectious agents, cytokine inducers and immuno-modulators. The present stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience Letters
دوره 503 شماره
صفحات -
تاریخ انتشار 2011